Integrative Levels Classification project ILC2 schedules developing schedules how it works people references

ILC edition 2
Expanded class ag

    broader class

          ag /ɛga/      operations; transformations; maps; morphisms
          ag96 /ɛgaɲɔltɔ/  [aga]                 operation property
          ag98 /ɛgaɲɔrkɔ/  [a]                equal to result
          ag99 /ɛgaɲɔɲɔ/  [a]                of operand
          ag99kc /ɛgaɲɔɲɔkaʃa/                          vector spaces
          ag99kt /ɛgaɲɔɲɔkata/                          topological spaces; continous functions
          ag99ɭt /ɛgaɲɔɲɔlata/                          categories; functors
          agai /ɛgɛi/                associative
          agam /ɛgɛma/                commutative
          agap /ɛgɛpa/                idempotent
          agh /ɛgaɣa/           homomorphisms
          agh99 /ɛgaɣaɲɔɲɔ/  [a]                     of structure
          agh99ɭmm /ɛgaɣaɲɔɲɔlamama/                                    monoids
          agh99ɭo /ɛgaɣaɲɔɲɔlo/                               groups
          agh99ɭr /ɛgaɣaɲɔɲɔlara/                               rings
          agh99me /ɛgaɣaɲɔɲɔme/                               order homomorphisms; order-preserving functions
          agh99mr /ɛgaɣaɲɔɲɔmara/                               graphs
          agh99msm /ɛgaɣaɲɔɲɔmasama/                                    matroids
          aghe /ɛgaɣe/                epimorphisms; surjective morphisms
          aghi /ɛgaɣi/                monomorphisms; injective morphisms
          aghm /ɛgaɣama/                isomorphisms; bijective morphisms  ↞ aghe epimorphisms aghi monomorphisms
          aghn /ɛgaɣana/                endomorphisms
          aghu /ɛgaɣu/                automorphisms  ↞ aghm isomorphisms aghn endomorphisms
          agm /ɛgama/           sum; union; addition
          agm98 /ɛgamaɲɔrkɔ/  [a]                     equal to sum
          agm99 /ɛgamaɲɔɲɔ/  [a]                     of term; addend; summand
          agm99kt /ɛgamaɲɔɲɔkata/                               topological spaces; topologies
          agm99me /ɛgamaɲɔɲɔme/                               posets
          agm99msm /ɛgamaɲɔɲɔmasama/                                    matroids
          agm99n /ɛgamaɲɔɲɔna/                          quantities; numbers
          agm99nnr99nnq98nnt /ɛgamaɲɔɲɔnanaraɲɔɲɔnanacaɲɔrkɔnanata/  ⋄                                    2 + 3 = 5
          agmd /ɛgamada/                disjoint union
          agmo /ɛgamo/                ordinal sum
          agn /ɛgana/           difference; complement; subtraction  
          agn98 /ɛganaɲɔrkɔ/  [a]                     equal to difference
          agn99 /ɛganaɲɔɲɔ/  [a]                     of minuend
          agn993 /ɛganaɲɔɲɔɲcɔ/  [a]                          minus subtrahend
          agn99n /ɛganaɲɔɲɔna/                          quantities; numbers
          agn99nnt993nnq98nnr /ɛganaɲɔɲɔnanataɲɔɲɔɲcɔnanacaɲɔrkɔnanara/  ⋄                                    5 - 2 = 3
          agns /ɛganasa/                symmetric difference; exclusive or; xor
          ago /ɛgo/           direct-like operations
          agom /ɛgoma/                direct sum
          agom99 /ɛgomaɲɔɲɔ/  [a]                          of structure
          agom99kc /ɛgomaɲɔɲɔkaʃa/                                    vector spaces
          agom99msm /ɛgomaɲɔɲɔmasama/                                    matroids
          agop /ɛgopa/                direct product
          agop99 /ɛgopaɲɔɲɔ/  [a]                          of structure
          agop99ɭmm /ɛgopaɲɔɲɔlamama/                                    monoids
          agop99ɭo /ɛgopaɲɔɲɔlo/                                    groups
          agop99ɭt /ɛgopaɲɔɲɔlata/                                    categories
          agp /ɛgapa/           product; intersection
          agp99 /ɛgapaɲɔɲɔ/  [a]                     of factor
          agp99n /ɛgapaɲɔɲɔna/                          quantities; numbers
          agp99nnr99nnq98nnu /ɛgapaɲɔɲɔnanaraɲɔɲɔnanacaɲɔrkɔnanu/  ⋄                                    3 x 2 = 6
          agpc /ɛgapaʃa/                Cartesian product; cross product
          agpc99 /ɛgapaʃaɲɔɲɔ/  [a]                          of structure
          agpc99kt /ɛgapaʃaɲɔɲɔkata/                                    topological spaces; Cartesian topologies
          agpc99me /ɛgapaʃaɲɔɲɔme/                                    posets
          agpc99mr /ɛgapaʃaɲɔɲɔmara/                                    graphs
          agpe /ɛgape/                semidirect product
          agq /ɛgaca/           quotient; division; partition
          agqe /ɛgace/                Euclidean division; division with remainder
          agqe98 /ɛgaceɲɔrkɔ/  [an]                          equal to quotient
          agqe986 /ɛgaceɲɔrkɔltɔ/  [an]                               with remainder
          agqe99 /ɛgaceɲɔɲɔ/  [an]                          of dividend
          agqe993 /ɛgaceɲɔɲɔɲcɔ/  [an]                               by divisor
          agqe99oss993nr /ɛgaceɲɔɲɔosasaɲɔɲɔɲcɔnara/  ⋄                                    44 / 3
          agqs /ɛgacasa/                quotient structure
          agqs99 /ɛgacasaɲɔɲɔ/  [a]                          of
          agqs99kt /ɛgacasaɲɔɲɔkata/                                    topological spaces; topologies
          agt /ɛgata/           tensor-like operations
          agtp /ɛgatapa/                tensor product
          agtp99 /ɛgatapaɲɔɲɔ/  [a]                          of structure
          agtp99mr /ɛgatapaɲɔɲɔmara/                                    graphs
          agu /ɛgu/           lexicographic product
          agu99 /ɛguɲɔɲɔ/  [a]                     of structure
          agu99mr /ɛguɲɔɲɔmara/                               graphs
          agw /ɛgawa/           exponentiation; power
          agw99 /ɛgawaɲɔɲɔ/  [a]                     of base
          agw993 /ɛgawaɲɔɲɔɲcɔ/  [a]                          raised to the power exponent
          agw99n /ɛgawaɲɔɲɔna/                          quantities; numbers
          agw99nnq993nnr98nnw /ɛgawaɲɔɲɔnanacaɲɔɲɔɲcɔnanaraɲɔrkɔnanawa/  ⋄                                    23 = 8
          agx /ɛgaxa/           nth root
          agx993 /ɛgaxaɲɔɲɔɲcɔ/  [a]                          -th
          agx993nnq /ɛgaxaɲɔɲɔɲcɔnanaca/                                    square
          agx993nnr /ɛgaxaɲɔɲɔɲcɔnanara/                                    cube
          agx99nnx993nnq98nnr /ɛgaxaɲɔɲɔnanaxaɲɔɲɔɲcɔnanacaɲɔrkɔnanara/  ⋄                                    √9 = 3
          agy /ɛgaɟa/           logarithm
          agy99 /ɛgaɟaɲɔɲɔ/  [a]                     of
          agy993 /ɛgaɟaɲɔɲɔɲcɔ/  [a]                          to; base
          agy993nnq /ɛgaɟaɲɔɲɔɲcɔnanaca/                                    2; binary logarithm
          agy993nnqU /ɛgaɟaɲɔɲɔɲcɔnanacuj/                                    e; natural logarithm
          agy993nop /ɛgaɟaɲɔɲɔɲcɔnopa/                                    10; common logarithm
          agy99nous993nnq98nnu /ɛgaɟaɲɔɲɔnousaɲɔɲɔɲcɔnanacaɲɔrkɔnanu/  ⋄                                    log264 = 6
 
Connected classes:
 
  ⌕        5 through; by change; transformation; process  ↞ ag 
  ⌕        51      developed through; by history; evolution  ↞ ag 
  ⌕        a95  [ag]           through transformation; operation; function; map; morphism
  ⌕        ag96  [aga]                 operation property
  ⌕        aghm                isomorphisms; bijective morphisms  ↞ aghe aghi 
  ⌕        aghu                automorphisms  ↞ aghm aghn 
  ⌕        amraf                     strong product of graphs  ↞ agp 
  ⌕        amrag                     zigzag product of graphs  ↞ agp 
  ⌕        amrah                     rooted product of graphs  ↞ agp 

specificity 
current: 99 

   
   

 

Move to another main class:
      a  b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r  s  t  u  v  w  x  y

or


or insert a term  and do a new


Facets key
0  as for perspective +
1  at time            +
2  in place           +
3  by agent           +
4  despite disorder   +
5  with transformation+
6  having property    +
7  with part          +
8  as form            +
9  of kind            +

 


ILC edition 2. Expanded class ag / — ISKO Italia <http://www.iskoi.org/ilc/2/no.php?no=ag> : 2019.09.18 - 2019.10.22 -